Refine Your Search

Topic

Search Results

Standard

Performance Levels and Methods of Measurement of Electromagnetic Compatibility of Vehicles, Boats (up to 15 m), and Machines (16.6 Hz to 18 GHz)

2015-01-23
HISTORICAL
J551/1_201501
This SAE Standard covers the measurement of radio frequency radiated emissions and immunity. Each part details the requirements for a specific type of electromagnetic compatibility (EMC) test and the applicable frequency range of the test method. The methods are applicable to a vehicle, boat, machine or device powered by an internal combustion engine or battery powered electric motor. Operation of all engines or motors (main and auxiliary) of a vehicle, boat, machine or device is included. All equipment normally operating when the vehicle, boat, machine or device is in operation is included. Operator controlled equipment is included or excluded as specified in the individual document parts. As a special case, CISPR 12 applies to battery powered floor finishing equipment, but robot carpet sweepers are excluded. By reference, IEC CISPR 12 and CISPR 25 are adopted as the standards for the measurement of vehicle emissions.
Standard

Performance Levels and Methods of Measurement of Electromagnetic Compatibility of Vehicles, Boats (up to 15 m), and Machines (16.6 Hz to 18 GHz)

2020-01-10
CURRENT
J551/1_202001
This SAE Standard covers the measurement of radio frequency radiated emissions and immunity. Each part details the requirements for a specific type of electromagnetic compatibility (EMC) test and the applicable frequency range of the test method. The methods are applicable to a vehicle, boat, machine or device powered by an internal combustion engine or battery powered electric motor. Operation of all engines or motors (main and auxiliary) of a vehicle, boat, machine or device is included. All equipment normally operating when the vehicle, boat, machine or device is in operation is included. Operator controlled equipment is included or excluded as specified in the individual document parts. As a special case, CISPR 12 applies to battery powered floor finishing equipment, but robot carpet sweepers are excluded. By reference, IEC CISPR 12 and CISPR 25 are adopted as the standards for the measurement of vehicle emissions.
Standard

Performance Levels and Methods of Measurement of Electromagnetic Compatibility of Vehicles, Boats (up to 15 m), and Machines (16.6 Hz to 18 GHz)

2006-10-06
HISTORICAL
J551/1_200610
This SAE Standard covers the measurement of radio frequency radiated emissions and immunity. Each part details the requirements for a specific type of electromagnetic compatibility (EMC) test and the applicable frequency range of the test method. The methods are applicable to a vehicle or device powered by an internal combustion engine or electric motor. Operation of all engines (main and auxiliary) of a vehicle or device is included. All equipment normally operating when the engine is running is included. Operator controlled equipment is included or excluded as specified in the individual document parts. By reference, IEC CISPR 12 and CISPR 25 are adopted as the standards for the measurement of vehicle emissions. In the event that an Amendment is made to the referenced edition of these documents or a new edition is published, the new IEC document shall become part of this standard six months after the publication of the IEC document.
Standard

Performance Levels and Methods of Measurement of Electromagnetic Compatibility of Vehicles, Boats (up to 15 m), and Machines (50 Hz TO 18 GHz)

2002-04-30
HISTORICAL
J551/1_200204
This SAE Standard covers the measurement of radio frequency radiated emissions and immunity. Each part details the requirements for a specific type of electromagnetic compatibility (EMC) test and the applicable frequency range of the test method. The methods are applicable to a vehicle or device powered by an internal combustion engine or electric motor. Operation of all engines (main and auxiliary) of a vehicle or device is included. All equipment normally operating when the engine is running is included. Operator controlled equipment is included or excluded as specified in the individual document parts. The recommended levels apply only to complete vehicles in their final manufactured form. Vehicle–mounted rectifiers used for charging in electric vehicles are included in Part 2 of this document when operated in their charging mode. Emissions from intentional radiators are not controlled by this document. (See applicable, appropriate regulatory documents.)
Standard

PERFORMANCE LEVELS AND METHODS OF MEASUREMENT OF ELECTROMAGNETIC COMPATIBILITY OF VEHICLES AND DEVICES (60 HZ TO 18 GHZ)

1996-06-01
HISTORICAL
J551/1_199606
This SAE Standard covers the measurement of radio frequency radiated emissions and immunity. Each part details the requirements for a specific type of electromagnetic compatibility (EMC) test and the applicable frequency range of the test method. The methods are applicable to a vehicle or device powered by an internal combustion engine or electric motor. Operation of all engines (main and auxiliary) of a vehicle or device is included. All equipment normally operating when the engine is running is included. Operator controlled equipment is included or excluded as specified in the individual document parts. The recommended levels apply only to complete vehicles in their final manufactured form. Vehicle-mounted rectifiers used for charging in electric vehicles are included in Part 2 of this document when operated in their charging mode. Additional charger requirements are under development in SAE J551-5. Emissions from intentional radiators are not controlled by this document.
Standard

PERFORMANCE LEVELS AND METHODS OF MEASUREMENT OF ELECTROMAGNETIC COMPATIBILITY OF VEHICLES AND DEVICES (60 Hz TO 18 GHz)

1994-03-01
HISTORICAL
J551/1_199403
This SAE Standard covers the measurement of radio frequency radiated emissions and immunity. Each part details the requirements for a specific type of electromagnetic compatibility (EMC) test and the applicable frequency range of the test method. The methods are applicable to a vehicle or other device powered by an internal combustion engine or electric motor. Operation of all engines (main and auxiliary) of a vehicle or device is included. All equipment normally operating when the engine is running is included. Operator-controlled equipment is included or excluded as specified in the individual document parts. The recommended levels apply only to complete vehicles in their final manufactured form. Vehicle-mounted rectifiers used for charging in electric vehicles are included in Part 2 of this document when operated in their charging mode. Emissions from intentional radiators are not controlled by this document. (See applicable appropriate regulatory documents.)
Standard

Measurement of Radiated Emissions from Integrated Circuits—TEM/Wideband TEM (GTEM) Cell Method; TEM Cell (150 kHz to 1 GHz), Wideband TEM Cell (150 kHz to 8 GHz)

2017-09-22
CURRENT
J1752/3_201709
This measurement procedure defines a method for measuring the electromagnetic radiation from an integrated circuit (IC). The IC being evaluated is mounted on an IC test printed circuit board (PCB) that is clamped to a mating port (referred to as a wall port) cut in the top or bottom of a TEM or wideband TEM (GTEM) cell. The test board is not in the cell as in the conventional usage but becomes a part of the cell wall. This method is applicable to any TEM or GTEM cell modified to incorporate the wall port; however, the measured RF voltage is affected by the septum to test board (wall) spacing. This procedure was developed using a 1 GHz TEM cell with a septum to wall spacing of 45 mm and a GTEM cell with average septum to wall spacing of 45 mm over the port area. Other cells may not produce identical spectral output but may be used for comparative measurements, subject to their frequency and sensitivity limitations.
Standard

Measurement of Radiated Emissions from Integrated Circuits—TEM/Wideband TEM (GTEM) Cell Method; TEM Cell (150 kHz to 1 GHz), Wideband TEM Cell (150 kHz to 8 GHz)

2011-06-17
HISTORICAL
J1752/3_201106
This measurement procedure defines a method for measuring the electromagnetic radiation from an integrated circuit (IC). The IC being evaluated is mounted on an IC test printed circuit board (PCB) that is clamped to a mating port (referred to as a wall port) cut in the top or bottom of a TEM or wideband TEM (GTEM) cell. The test board is not in the cell as in the conventional usage but becomes a part of the cell wall. This method is applicable to any TEM or GTEM cell modified to incorporate the wall port; however, the measured RF voltage is affected by the septum to test board (wall) spacing. This procedure was developed using a 1 GHz TEM cell with a septum to wall spacing of 45 mm and a GTEM cell with average septum to wall spacing of 45 mm over the port area. Other cells may not produce identical spectral output but may be used for comparative measurements, subject to their frequency and sensitivity limitations.
Standard

Measurement of Radiated Emissions from Integrated Circuits—TEM/Wideband TEM (GTEM) Cell Method; TEM Cell (150 kHz to 1 GHz), Wideband TEM Cell (150 kHz to 8 GHz)

2003-01-21
HISTORICAL
J1752/3_200301
This measurement procedure defines a method for measuring the electromagnetic radiation from an integrated circuit (IC). The IC being evaluated is mounted on an IC test printed circuit board (PCB) that is clamped to a mating port (referred to as a wall port) cut in the top or bottom of a TEM or wideband TEM (GTEM) cell. The test board is not in the cell as in the conventional usage but becomes a part of the cell wall. This method is applicable to any TEM or GTEM cell modified to incorporate the wall port; however, the measured RF voltage is affected by the septum to test board (wall) spacing. This procedure was developed using a 1 GHz TEM cell with a septum to wall spacing of 45 mm and a GTEM cell with average septum to wall spacing of 45 mm over the port area. Other cells may not produce identical spectral output but may be used for comparative measurements, subject to their frequency and sensitivity limitations.
Standard

Performance Levels and Methods of Measurement of Magnetic and Electric Field Strength from Electric Vehicles, 150 kHz to 30 MHz

2012-05-11
HISTORICAL
J551/5_201205
This SAE Recommended Practice specifies measurement procedures and performance levels for magnetic and electric field emissions and conducted power mains emissions over the frequency range 150 kHz to 30 MHz, for vehicles incorporating electric propulsion systems, e.g., battery, hybrid, or plug-in hybrid electric vehicles. Conducted emission measurements in this document are applicable only to battery-charging systems which utilize a switching frequency above 9 kHz, are mounted on the vehicle, and whose power is transferred by metallic conductors. Conducted emission requirements apply only during charging of the batteries from AC power lines. Conducted and radiated emissions measurements of battery-charging systems that use an induction power coupling device are not covered by this document. The measurement of electromagnetic disturbances for frequencies from 30 MHz to 1000 MHz is covered in CISPR 12.
Standard

Electromagnetic Compatibility Measurement Procedure for Vehicle Components—Part 13: Immunity to Electrostatic Discharge

2004-11-03
HISTORICAL
J1113/13_200411
This SAE Standard specifies the test methods and procedures necessary to evaluate electrical components intended for automotive use to the threat of Electrostatic Discharges (ESDs). It describes test procedures for evaluating electrical components on the bench in the powered mode and for the packaging and handling non-powered mode. A procedure for calibrating the simulator that is used for electrostatic discharges is given in Appendix A. An example of how to calculate the RC Time Constant is given in Appendix B Functional Performance Status Classifications for immunity to ESD and Sensitivity classifications for ESD sensitive devices are given in Appendix C.
Standard

Electromagnetic Compatibility Measurement Procedure for Vehicle Components - Part 13: Immunity to Electrostatic Discharge

2015-02-26
CURRENT
J1113/13_201502
This SAE Standard specifies the test methods and procedures necessary to evaluate electrical components intended for automotive use to the threat of Electrostatic Discharges (ESDs). It describes test procedures for evaluating electrical components on the bench in the powered mode and for the packaging and handling non-powered mode. A procedure for calibrating the simulator that is used for electrostatic discharges is given in Appendix A. An example of how to calculate the RC Time Constant is given in Appendix B Functional Performance Status Classifications for immunity to ESD and Sensitivity classifications for ESD sensitive devices are given in Appendix C.
Standard

Electromagnetic Compatibility Measurement Procedure for Vehicle Components - Part 13: Immunity to Electrostatic Discharge

2011-06-07
HISTORICAL
J1113/13_201106
This SAE Standard specifies the test methods and procedures necessary to evaluate electrical components intended for automotive use to the threat of Electrostatic Discharges (ESDs). It describes test procedures for evaluating electrical components on the bench in the powered mode and for the packaging and handling non-powered mode. A procedure for calibrating the simulator that is used for electrostatic discharges is given in Appendix A. An example of how to calculate the RC Time Constant is given in Appendix B Functional Performance Status Classifications for immunity to ESD and Sensitivity classifications for ESD sensitive devices are given in Appendix C.
Standard

Electromagnetic Compatibility Measurement Procedure for Vehicle Components—Part 13—Immunity to Electrostatic Discharge

1997-10-01
HISTORICAL
J1113/13_199710
This SAE Standard specifies the test methods and procedures necessary to evaluate electrical components intended for automotive use to the threat of Electrostatic Discharges (ESDs). It describes test procedures for evaluating electrical components on the bench in the powered-up mode and for packaging and handling. Functional status classifications for immunity to ESD are given in Appendix A. Sensitivity classifications for ESD sensitive devices are given in Appendix A. A procedure for calibrating the simulator that is used for electrostatic discharges is given in Appendix B.
Standard

Electromagnetic Compatibility Measurement Procedure for Vehicle Components—Part 13: Immunity to Electrostatic Discharge

2002-08-27
HISTORICAL
J1113/13_200208
This SAE Standard specifies the test methods and procedures necessary to evaluate electrical components intended for automotive use to the threat of Electrostatic Discharges (ESDs). It describes test procedures for evaluating electrical components on the bench in the powered mode and for the packaging and handling non-powered mode. A procedure for calibrating the simulator that is used for electrostatic discharges is given in Appendix A. Functional Performance Status Classifications for immunity to ESD are given in Appendix B. Sensitivity classifications for ESD sensitive devices are given in Appendix B.
Standard

ELECTROMAGNETIC COMPATIBILITY MEASUREMENT PROCEDURE FOR VEHICLE COMPONENTS—PART 13—IMMUNITY TO ELECTROSTATIC DISCHARGE

1995-02-01
HISTORICAL
J1113/13_199502
This SAE Recommended Practice specifies the test methods and procedures necessary to evaluate electrical components intended for automotive use to the threat of Electrostatic Discharges (ESDs). It describes test procedures for evaluating electrical components on the bench. Functional status classifications for immunity to ESD are given in Appendix A. A procedure for calibrating the simulator that is used for electrostatic discharges is given in Appendix B.
X